Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: Efficiency and sensitivity of electric horn


Senior Member

Status: Offline
Posts: 385
Date:
Efficiency and sensitivity of electric horn
Permalink   


Efficiency and sensitivity of electric horn

 

Loudspeaker efficiency is defined as the sound power outputCD9088CB

 divided by the electrical power input. Most loudspeakers are actually very inefficient transducers; only about 1% of the electrical energy sent by an amplifier to a typical home loudspeaker is converted to acoustic energy. The remainder is convertedMB8713

 to heat, mostly in the voice coil and magnet assembly. The main reason for this is the difficulty of achieving proper impedance matching between the acoustic impedance of the drive unit and that of the air into which it is radiating (at low frequencies improving this matchLS2822

 is the main purpose of speaker enclosure designs). The efficiency of loudspeaker drivers varies with frequency as well. For instance, the output of a woofer driver decreases as the input frequency decreases because of the increasingly poor match between air and the driver.Clearly then, sensitivityTA8659

 does not correlate precisely with efficiency, as it also depends on the directivity of the driver being tested and the acoustic environment in front of the actual loudspeaker. For example, a cheerleader's horn produces more sound output in the direction it is pointed by concentrating sound waves from the cheerleader in oneAY-3-8910

 direction, thus "focusing" them. The horn also improves impedance matching between the voice and the air, which produces more acoustic power for a given speaker power. In some cases, improved impedance matching (via careful enclosure design) will allow the speaker to produce more acoustic power.

 



__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.

Tweet this page Post to Digg Post to Del.icio.us


Create your own FREE Forum
Report Abuse
Powered by ActiveBoard